Markscheme

November 2018

Mathematics

Higher level

Paper 1

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to $\mathrm{RM}^{\text {TM }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking November 2018". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by RM ${ }^{\text {TM }}$ Assessor.

Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6
 Misread

If a candidate incorrectly copies information from the question, this is a misread (MR).
A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses [1 mark].

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10
 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

Section A

1. (a)

Note: Award M1 for a Venn diagram with at least one probability in the correct region.

EITHER

$\mathrm{P}\left(A \cap B^{\prime}\right)=0.3$
$\mathrm{P}(A \cup B)=0.3+0.4+0.1=0.8$

OR

$\mathrm{P}(B)=0.5$
$\mathrm{P}(A \cup B)=0.5+0.4-0.1=0.8$
(b) METHOD 1
$\mathrm{P}(A) \mathrm{P}(B)=0.4 \times 0.5$
$=0.2$
statement that their $\mathrm{P}(A) \mathrm{P}(B) \neq \mathrm{P}(A \cap B)$
R1
Note: Award $\mathbf{R 1}$ for correct reasoning from their value.
$\Rightarrow A, B$ not independent

METHOD 2

$\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}=\frac{0.1}{0.5}$
$=0.2$
A1
statement that their $\mathrm{P}(A \mid B) \neq \mathrm{P}(A) \quad \boldsymbol{R 1}$
Note: Award R1 for correct reasoning from their value.
$\Rightarrow A, B$ not independent
Note: Accept equivalent argument using $\mathrm{P}(B \mid A)=0.25$.
2. (a) METHOD 1

$$
\begin{aligned}
& \binom{8}{4} \\
& =\frac{8!}{4!4!}=\frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1}=7 \times 2 \times 5 \\
& =70
\end{aligned}
$$

METHOD 2

recognition that they need to count the teams with 0 boys, 1 boy... 4 boys
$1+\binom{4}{1} \times\binom{ 4}{3}+\binom{4}{2} \times\binom{ 4}{2}+\binom{4}{1} \times\binom{ 4}{3}+1$
$=1+(4 \times 4)+(6 \times 6)+(4 \times 4)+1$
$=70$
(b) EITHER
recognition that the answer is the total number of teams minus the number of teams with all girls or all boys

OR

recognition that the answer is the total of the number of teams with 1 boy, 2 boys, 3 boys

$$
\binom{4}{1} \times\binom{ 4}{3}+\binom{4}{2} \times\binom{ 4}{2}+\binom{4}{1} \times\binom{ 4}{3}=(4 \times 4)+(6 \times 6)+(4 \times 4)
$$

THEN

$=68$

A1
[2 marks]
Total [5 marks]
3. (a)

concave down and symmetrical over correct domain
(b) $\quad a=0$

A1
Note: Award A1 for $a=0$ only if consistent with their graph.
(c) (i) $1 \leq x \leq 5$

A1
Note: Allow FT from their graph.
(ii) $y=4 \cos x+1$
$x=4 \cos y+1$
$\frac{x-1}{4}=\cos y$
$\Rightarrow y=\arccos \left(\frac{x-1}{4}\right)$
$\Rightarrow g^{-1}(x)=\arccos \left(\frac{x-1}{4}\right)$
A1
[3 marks]
Total [7 marks]
4. (a) an attempt at a valid method eg by inspection or row reduction
(M1)
$2 \times R_{2}=R_{1} \Rightarrow 2 a=-1$
$\Rightarrow a=-\frac{1}{2}$
[2 marks]
continued...

Question 4 continued
(b) using elimination or row reduction to eliminate one variable correct pair of equations in 2 variables, such as

$$
\left.\begin{array}{c}
5 x+10 y=25 \tag{A1}\\
5 x+12 y=4
\end{array}\right\}
$$

Note: Award $\boldsymbol{A 1}$ for $z=0$ and one other equation in two variables.
attempting to solve for these two variables

$$
x=26, y=-10.5, z=0
$$

Note: Award A1A0 for only two correct values, and AOAO for only one.
Note: Award marks in part (b) for equivalent steps seen in part (a).

Total [7 marks]

5. (a) $\quad \boldsymbol{a} \cdot \boldsymbol{b}=(1 \times 0)+(1 \times-t)+(t \times 4 t)$
$=-t+4 t^{2}$
A1
[2 marks]
(M1)
R1
Note: Allow \leq for $\boldsymbol{R 1}$.
attempt to solve using sketch or sign diagram
$0<t<\frac{1}{4}$
6. consider $n=1.1(1!)=1$ and $2!-1=1$ therefore true for $n=1$

Note: There must be evidence that $n=1$ has been substituted into both expressions, or an expression such LHS=RHS=1 is used. "therefore true for $n=1$ " or an equivalent statement must be seen.
assume true for $n=k$, (so that $\sum_{r=1}^{k} r(r!)=(k+1)!-1$)
Note: Assumption of truth must be present.
consider $n=k+1$
$\sum_{r=1}^{k+1} r(r!)=\sum_{r=1}^{k} r(r!)+(k+1)(k+1)!$
$=(k+1)!-1+(k+1)(k+1)$!
$=(k+2)(k+1)!-1$
Note: $\boldsymbol{M} 1$ is for factorising $(k+1)$!
$=(k+2)!-1$
$=((k+1)+1)!-1$
so if true for $n=k$, then also true for $n=k+1$, and as true for $n=1$ then true for
all $n\left(\in \mathbb{Z}^{+}\right)$
Note: Only award final $\boldsymbol{R 1}$ if all three method marks have been awarded.
Award $\mathbf{R 0}$ if the proof is developed from both LHS and RHS.
7. (a) $C_{1}: y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$

Note: $\boldsymbol{M 1}$ is for use of both product rule and implicit differentiation.

$$
\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{y}{x}
$$

Note: Accept $-\frac{4}{x^{2}}$.

$$
\begin{align*}
& C_{2}: 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 x=0 \tag{M1}\\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{x}{y}
\end{align*}
$$

Note: Accept $\pm \frac{x}{\sqrt{2+x^{2}}}$.

Question 7 continued
(b) substituting a and b for x and y
product of gradients at P is $\left(-\frac{b}{a}\right)\left(\frac{a}{b}\right)=-1$ or equivalent reasoning R1

Note: The R1 is dependent on the previous M1.
so tangents are perpendicular
8. $-\mathrm{i} \sqrt{3}$ is a root
$3+\log _{2} 3-\log _{2} 6\left(=3+\log _{2} \frac{1}{2}=3-1=2\right)$ is a root
sum of roots: $-a=3+\log _{2} 3 \Rightarrow a=-3-\log _{2} 3$ M1

Note: Award $\boldsymbol{M 1}$ for use of $-a$ is equal to the sum of the roots, do not award if minus is missing.
Note: If expanding the factored form of the equation, award $\boldsymbol{M 1}$ for equating a to the coefficient of z^{3}.
product of roots: $(-1)^{4} d=2\left(\log _{2} 6\right)(\mathrm{i} \sqrt{3})(-\mathrm{i} \sqrt{3})$
$=6 \log _{2} 6$
Note: Award M1AO for $d=-6 \log _{2} 6$.
$6 a+d+12=-18-6 \log _{2} 3+6 \log _{2} 6+12$

EITHER

$=-6+6 \log _{2} 2=0$
M1A1AG
Note: M1 is for a correct use of one of the log laws.
OR
$=-6-6 \log _{2} 3+6 \log _{2} 3+6 \log _{2} 2=0$
M1A1AG
Note: M1 is for a correct use of one of the log laws.

Section B

9. (a) METHOD 1

$$
\begin{aligned}
& \boldsymbol{n}=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right) \times\left(\begin{array}{c}
2 b \\
0 \\
b-1
\end{array}\right) \\
& =\left(\begin{array}{c}
b-1 \\
4 b \\
-2 b
\end{array}\right) \\
& (0,0,0) \text { on } \Pi \text { so }(b-1) x+4 b y-2 b z=0
\end{aligned}
$$

METHOD 2

using equation of the form $p x+q y+r z=0$
$(0,1,2)$ on $\Pi \Rightarrow q+2 r=0$
$(2 b, 0, b-1)$ on $\Pi \Rightarrow 2 b p+r(b-1)=0$
(M1)A1

Note: Award (M1)A1 for both equations seen.

solve for p, q, and r
$(b-1) x+4 b y-2 b z=0$
A1
[5 marks]
(b) M has coordinates $\left(b, 0, \frac{b-1}{2}\right)$
$r=\left(\begin{array}{c}b \\ 0 \\ \frac{b-1}{2}\end{array}\right)+\lambda\left(\begin{array}{c}b-1 \\ 4 b \\ -2 b\end{array}\right)$
Note: Award M1A0 if $\boldsymbol{r}=$ (or equivalent) is not seen.
Note: Allow equivalent forms such as $\frac{x-b}{b-1}=\frac{y}{4 b}=\frac{2 z-b+1}{-4 b}$.

Question 9 continued
(c) METHOD 1

$$
\begin{equation*}
x=z=0 \tag{M1}
\end{equation*}
$$

Note: Award M1 for either $x=0$ or $z=0$ or both.
$b+\lambda(b-1)=0$ and $\frac{b-1}{2}-2 \lambda b=0$ A1
attempt to eliminate λ M1
$\Rightarrow-\frac{b}{b-1}=\frac{b-1}{4 b}$
$-4 b^{2}=(b-1)^{2}$

EITHER

consideration of the signs of LHS and RHS
the LHS is negative and the RHS must be positive (or equivalent statement)

OR

$-4 b^{2}=b^{2}-2 b+1$
$\Rightarrow 5 b^{2}-2 b+1=0$
$\Delta=(-2)^{2}-4 \times 5 \times 1=-16(<0)$
\therefore no real solutions
THEN
so no point of intersection

METHOD 2

$x=z=0$
Note: Award $\boldsymbol{M} \mathbf{1}$ for either $x=0$ or $z=0$ or both.
$b+\lambda(b-1)=0$ and $\frac{b-1}{2}-2 \lambda b=0$
attempt to eliminate b
$\Rightarrow \frac{\lambda}{1+\lambda}=\frac{1}{1-4 \lambda}$
$-4 \lambda^{2}=1\left(\Rightarrow \lambda^{2}=-\frac{1}{4}\right)$
consideration of the signs of LHS and RHS
there are no real solutions (or equivalent statement)
so no point of intersection
10. (a) METHOD 1
attempt at integration by parts with $u=\mathrm{e}^{x}, \frac{\mathrm{~d} v}{\mathrm{~d} x}=\cos 2 x$

$$
\begin{aligned}
& \int \mathrm{e}^{x} \cos 2 x \mathrm{~d} x=\frac{\mathrm{e}^{x}}{2} \sin 2 x \mathrm{~d} x-\int \frac{\mathrm{e}^{x}}{2} \sin 2 x \mathrm{~d} x \\
& =\frac{\mathrm{e}^{x}}{2} \sin 2 x-\frac{1}{2}\left(-\frac{\mathrm{e}^{x}}{2} \cos 2 x+\int \frac{\mathrm{e}^{x}}{2} \cos 2 x\right) \\
& =\frac{\mathrm{e}^{x}}{2} \sin 2 x+\frac{\mathrm{e}^{x}}{4} \cos 2 x-\frac{1}{4} \int \mathrm{e}^{x} \cos 2 x \mathrm{~d} x \\
& \therefore \frac{5}{4} \int \mathrm{e}^{x} \cos 2 x \mathrm{~d} x=\frac{\mathrm{e}^{x}}{2} \sin 2 x+\frac{\mathrm{e}^{x}}{4} \cos 2 x \\
& \int \mathrm{e}^{x} \cos 2 x \mathrm{~d} x=\frac{2 \mathrm{e}^{x}}{5} \sin 2 x+\frac{\mathrm{e}^{x}}{5} \cos 2 x(+c)
\end{aligned}
$$

METHOD 2

attempt at integration by parts with $u=\cos 2 x, \frac{\mathrm{~d} v}{\mathrm{~d} x}=\mathrm{e}^{x}$

$$
\int \mathrm{e}^{x} \cos 2 x \mathrm{~d} x=\mathrm{e}^{x} \cos 2 x+2 \int \mathrm{e}^{x} \sin 2 x \mathrm{~d} x
$$

$=\mathrm{e}^{x} \cos 2 x+2\left(\mathrm{e}^{x} \sin 2 x-2 \int \mathrm{e}^{x} \cos 2 x \mathrm{~d} x\right)$
$=\mathrm{e}^{x} \cos 2 x+2 \mathrm{e}^{x} \sin 2 x-4 \int \mathrm{e}^{x} \cos 2 x \mathrm{~d} x$
$\therefore 5 \int \mathrm{e}^{x} \cos 2 x \mathrm{~d} x=\mathrm{e}^{x} \cos 2 x+2 \mathrm{e}^{x} \sin 2 x$
$\int \mathrm{e}^{x} \cos 2 x \mathrm{~d} x=\frac{2 \mathrm{e}^{x}}{5} \sin 2 x+\frac{\mathrm{e}^{x}}{5} \cos 2 x(+c)$

METHOD 3

attempt at use of table
eg

$\cos 2 x$	e^{x}
$-2 \sin 2 x$	e^{x}
$-4 \cos 2 x$	e^{x}

Note: $\boldsymbol{A 1}$ for first 2 lines correct, $\boldsymbol{A} 1$ for third line correct.

$$
\begin{array}{ll}
\int \mathrm{e}^{x} \cos 2 x \mathrm{~d} x=\mathrm{e}^{x} \cos 2 x+2 \mathrm{e}^{x} \sin 2 x-4 \int \mathrm{e}^{x} \cos 2 x \mathrm{~d} x & \text { M1 } \\
\therefore 5 \int \mathrm{e}^{x} \cos 2 x \mathrm{~d} x==\mathrm{e}^{x} \cos 2 x+2 \mathrm{e}^{x} \sin 2 x & \text { M1 } \\
\int \mathrm{e}^{x} \cos 2 x \mathrm{~d} x=\frac{2 \mathrm{e}^{x}}{5} \sin 2 x+\frac{\mathrm{e}^{x}}{5} \cos 2 x(+c) & \text { AG }
\end{array}
$$

Question 10 continued
(b) $\int \mathrm{e}^{x} \cos ^{2} x \mathrm{~d} x=\int \frac{\mathrm{e}^{x}}{2}(\cos 2 x+1) \mathrm{d} x$

M1A1

A1

AG
$=\frac{\mathrm{e}^{x}}{5} \sin 2 x+\frac{\mathrm{e}^{x}}{10} \cos 2 x+\frac{\mathrm{e}^{x}}{2}(+c)$
(c) $f^{\prime}(x)=\mathrm{e}^{x} \cos ^{2} x-2 \mathrm{e}^{x} \sin x \cos x$

M1A1
Note: Award $\mathbf{M 1}$ for an attempt at both the product rule and the chain rule.
$\mathrm{e}^{x} \cos x(\cos x-2 \sin x)=0$
Note: Award $\boldsymbol{M} \mathbf{1}$ for an attempt to factorise $\cos x$ or divide by $\cos x(\cos x \neq 0)$.
discount $\cos x=0$ (as this would also be a zero of the function)
$\Rightarrow \cos x-2 \sin x=0$
$\Rightarrow \tan x=\frac{1}{2}$
$\Rightarrow x=\arctan \left(\frac{1}{2}\right)$ (at A) and $x=\pi+\arctan \left(\frac{1}{2}\right)$ (at C)
A1A1
Note: Award A1 for each correct answer. If extra values are seen award A1A0.
[6 marks]
(d) $\cos x=0 \Rightarrow x=\frac{\pi}{2}$ or $\frac{3 \pi}{2}$

Note: The A1 may be awarded for work seen in part (c).

$$
\begin{aligned}
& \int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}}\left(\mathrm{e}^{x} \cos ^{2} x\right) \mathrm{d} x=\left[\frac{\mathrm{e}^{x}}{5} \sin 2 x+\frac{\mathrm{e}^{x}}{10} \cos 2 x+\frac{\mathrm{e}^{x}}{2}\right]_{\frac{\pi}{2}}^{\frac{3 \pi}{2}} \\
& =\left(-\frac{\mathrm{e}^{\frac{3 \pi}{2}}}{10}+\frac{\mathrm{e}^{\frac{3 \pi}{2}}}{2}\right)-\left(-\frac{\mathrm{e}^{\frac{\pi}{2}}}{10}+\frac{\mathrm{e}^{\frac{\pi}{2}}}{2}\right)\left(=\frac{2 \mathrm{e}^{\frac{3 \pi}{2}}}{5}-\frac{2 \mathrm{e}^{\frac{\pi}{2}}}{5}\right)^{2}
\end{aligned}
$$

Note: Award $\boldsymbol{M 1}$ for substitution of the end points and subtracting, (A1) for $\sin 3 \pi=\sin \pi=0$ and $\cos 3 \pi=\cos \pi=-1$ and $\boldsymbol{A 1}$ for a completely correct answer.
11. (a) $(r(\cos \theta+\mathrm{i} \sin \theta))^{24}=1(\cos 0+\mathrm{i} \sin 0)$
use of De Moivre's theorem
$r^{24}=1 \Rightarrow r=1$
$24 \theta=2 \pi n \Rightarrow \theta=\frac{\pi n}{12},(n \in \mathbb{Z})$
$0<\arg z<\frac{\pi}{2} \Rightarrow n=1,2,3,4,5$
$z=\mathrm{e}^{\frac{\pi \mathrm{i}}{12}}$ or $\mathrm{e}^{\frac{2 \pi \mathrm{i}}{12}}$ or $\mathrm{e}^{\frac{3 \pi \mathrm{i}}{12}}$ or $\mathrm{e}^{\frac{4 \pi \mathrm{i}}{12}}$ or $\mathrm{e}^{\frac{5 \pi \mathrm{i}}{12}}$
Note: Award A1 if additional roots are given or if three correct roots are given with no incorrect (or additional) roots.
(b) (i) $\operatorname{Re} S=\cos \frac{\pi}{12}+\cos \frac{2 \pi}{12}+\cos \frac{3 \pi}{12}+\cos \frac{4 \pi}{12}+\cos \frac{5 \pi}{12}$

$$
\operatorname{Im} S=\sin \frac{\pi}{12}+\sin \frac{2 \pi}{12}+\sin \frac{3 \pi}{12}+\sin \frac{4 \pi}{12}+\sin \frac{5 \pi}{12}
$$

Note: Award A1 for both parts correct.
but $\sin \frac{5 \pi}{12}=\cos \frac{\pi}{12}, \sin \frac{4 \pi}{12}=\cos \frac{2 \pi}{12}, \sin \frac{3 \pi}{12}=\cos \frac{3 \pi}{12}$,
$\sin \frac{2 \pi}{12}=\cos \frac{4 \pi}{12}$ and $\sin \frac{\pi}{12}=\cos \frac{5 \pi}{12}$
M1A1
$\Rightarrow \operatorname{Re} S=\operatorname{Im} S$
AG
Note: Accept a geometrical method.
(ii) $\cos \frac{\pi}{12}=\cos \left(\frac{\pi}{4}-\frac{\pi}{6}\right)=\cos \frac{\pi}{4} \cos \frac{\pi}{6}+\sin \frac{\pi}{4} \sin \frac{\pi}{6}$
$=\frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \frac{1}{2}$
$=\frac{\sqrt{6}+\sqrt{2}}{4}$
continued...

Question 11 continued
(iii) $\cos \frac{5 \pi}{12}=\cos \left(\frac{\pi}{6}+\frac{\pi}{4}\right)=\cos \frac{\pi}{6} \cos \frac{\pi}{4}-\sin \frac{\pi}{6} \sin \frac{\pi}{4}$

Note: Allow alternative methods eg $\cos \frac{5 \pi}{12}=\sin \frac{\pi}{12}=\sin \left(\frac{\pi}{4}-\frac{\pi}{6}\right)$.
$=\frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2}-\frac{1}{2} \frac{\sqrt{2}}{2}=\frac{\sqrt{6}-\sqrt{2}}{4}$
$\operatorname{Re} S=\cos \frac{\pi}{12}+\cos \frac{2 \pi}{12}+\cos \frac{3 \pi}{12}+\cos \frac{4 \pi}{12}+\cos \frac{5 \pi}{12}$
$\operatorname{Re} S=\frac{\sqrt{2}+\sqrt{6}}{4}+\frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2}+\frac{1}{2}+\frac{\sqrt{6}-\sqrt{2}}{4}$
$=\frac{1}{2}(\sqrt{6}+1+\sqrt{2}+\sqrt{3})$
$=\frac{1}{2}(1+\sqrt{2})(1+\sqrt{3})$
$S=\operatorname{Re}(S)(1+\mathrm{i})$ since $\operatorname{Re} S=\operatorname{Im} S$,
R1
$S=\frac{1}{2}(1+\sqrt{2})(1+\sqrt{3})(1+\mathrm{i})$

